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Superdiffusivity of Two Dimensional Lattice Gas
Models
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It was proved [Navier–Stokes Equations for Stochastic Particle System on the
Lattice. Comm. Math. Phys. (1996) 182, 395; Lattice gases, large deviations,
and the incompressible Navier–Stokes equations. Ann. Math. (1998) 148, 51]
that stochastic lattice gas dynamics converge to the Navier–Stokes equations in
dimension d=3 in the incompressible limits. In particular, the viscosity is finite.
We proved that, on the other hand, the viscosity for a two dimensional lattice
gas model diverges faster than log log t . Our argument indicates that the correct
divergence rate is (log t)1/2. This problem is closely related to the logarithmic
correction of the time decay rate for the velocity auto-correlation function of a
tagged particle.
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1. INTRODUCTION

It is well-known that although the classical dynamics is time reversible, the
macroscopic behavior of the fluid, governed by the Navier–Stokes equa-
tions, is time irreversible. The measure on the time irreversibility is char-
acterized by the viscosity, also called the bulk diffusivity of the system.
It can be represented as the diffusion coefficient of a second class parti-
cle in the fluid. Instead of a second class particle, one can study the typi-
cal behavior of a tagged particle. Once again, even though the underlying
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dynamics is time reversible, the tagged particle is diffusive. The diffusion
coefficient in this case is called the self diffusion coefficient. The bulk and
self diffusion coefficients are two different quantities, but they share simi-
lar qualitative behavior.

The Green–Kubo formulae represent the bulk or self diffusion coeffi-
cients as time integrals over the current correlation function or the velocity
correlation function. In the fundamental work of Alder and Wainwright,(1)

it predicts that the time decay of the velocity correlation function is of
order t−d/2, here d is the dimension of the system. Since the decay is 1/t
in d = 2 is not integrable, it predicted that the self-diffusion coefficient
of the two dimensional fluid diverges. In the later work, Alder et al.(2)

proposed that the decay in two dimension is actually t−1log t−1/2. How-
ever, the logarithmic correction cannot be seen from the their simulation.
This decay rate was also obtained by Forster et al.(5) by a renormalization
group method. The later simulation by van der Hoef and Frenkel(6) con-
firmed that there is a discrepancy to the pure algebraic decay t−1, but is
far from being able to determine the precise logarithmic correction.

If we formally integrate the law t−1(log t)−1/2, we obtain from the
Green–Kubo formula that the diffusion coefficient diverges as (log t)1/2

in dimension d = 2. For higher dimension, the diffusion coefficient is
expected to be finite. This was proved rigorously in various settings. For
the stochastic lattice gas models considered in Ref. 4, the bulk diffusion
coefficient is proved to be finite for d�3. One key ingredient of these lat-
tice gas models is the asymmetric simple exclusion process. For this pro-
cess, both the bulk and self diffusion coefficients were proved to be finite
in Refs. 12 and 14 for dimension d�3. Van Beijeren et al.(3) predicted via
the mode-coupling theory that the diffusivity diverges as (log t)2/3 in d=2
and t1/3 for d = 1. The two dimensional case was proved in Ref. 15; the
one dimensional case was only partly solved.(11) However, related prob-
lems in the one dimensional case was solved by integrable method.(7)

In this paper, we shall proved that for the stochastic lattice model,
the bulk diffusion coefficient diverges in d = 2. Following the method of
Ref. 11, we derive a series of upper and lower bounds to the diffusivity
in terms of continuous fractions for operators. If we take the first lower
bound to the diffusivity, we obtain the divergence rate in Theorem 2.1. If
one assumes that the dispersion laws of these two sequences (upper and
lower) of the continuous fractions converge, the divergence law (log t)1/2

can be obtained heuristically. See the discussion at the end of this paper.
Notice that the exponent 1/2 is different from the 2/3 in the case of the
asymmetric simple exclusion process. Since the lattice gas models are very
complicated, we do not know if the argument of Ref. 15 can be extended
to this case.
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2. THE MODEL

We recall the lattice gas models considered in Ref. 4 in dimension
d. Denote by {ej , j = 1, . . . , d} the canonical basis of R

d and let E =
{±e1, . . . ,±ed}. Let V ⊂R

d be a finite set representing the possible veloc-
ities. On each site of the lattice at most one particle for each velocity
is allowed. A configuration of particles on the lattice is denoted by η=
{ηx, x ∈Z

d} where ηx ={η(x, v), v∈V} and η(x, v)∈{0,1}, x ∈Z
d , v∈V ,

is the number of particles with velocity v at x. The set of particle config-

urations is X= ({0,1}V)Zd .
The dynamics consists of two parts: Asymmetric random walk with

exclusion among particles of the same velocity and binary collisions
between particles of different velocities. We first describe the random walk
part of the dynamics. Particles of velocity v perform a continuous time
asymmetric random walk with simple exclusion. A particle at x waits a
random, exponentially distributed time then chooses a nearby site x + y

according to a certain jump law and jumps there as long as the site is
not occupied by another particle of the same velocity. If there is a parti-
cle of the same velocity, the jump is suppressed and the particle waits for a
new exponential time. All particles are doing this simultaneously, and since
time is continuous ties do not occur. The jump law and waiting time are
chosen so that the rate of jumping from site x to site x+y is p(y, v) which
should be finite range, irreducible and have mean velocity v:

∑

y

y p(y, v) = v .

For the sake of concreteness, we take in this paper p(y, v)=0 unless |y|=∑
1�j�d |yj |=1 in which case

p(±ej , v) = γ ± (1/2)ej ·v

for each vector ej and some γ >0 large enough for all rates p(e, v) to be
non-negative. The generator Lex of the random walk part of the dynamics
acts on local functions f on the configuration space X by

(Lexf )(η) =
∑

v∈V
e∈E

∑

x∈Zd

p(x, e, v;η) [f (ηx,x+e,v)−f (η)] ,

where

p(x, e, v;η) = η(x, v) [1−η(x+ e, v)]p(e, v)
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is the jump rate from x to x+ e for particles with velocity v and

ηx,y,v(z,w) =





η(y, v) if w=v and z=x,
η(x, v) if w=v and z=y,
η(z,w) otherwise.

The collision part of the dynamics is described as follows. Denote by
Q a collision set which preserves momentum:

Q ⊂ {(v,w, v′,w′)∈V4:v+w=v′ +w′} .

Assume that Q is symmetric in the sense that (v,w,w′, v′), (v′,w′, v,w),
and (v′,w′,w, v) belong to Q as soon as (v,w, v′,w′) belongs to Q. Par-
ticles of velocities v and w at the same site collide at rate one and produce
two particles of velocities v′ and w′ at that site. The generator Lc is there-
fore

Lcf (η) =
∑

y∈Zd

∑

q∈Q
p(y, q, η) [f (ηy,q)−f (η)] ,

where the rate p(y, q, η) is given by

p(y, q, η) = η(y, v) η(y,w) [1−η(y, v′)] [1−η(y,w′)]

and, for q = (v0, v1, v2, v3), the configuration ηy,q after the collision is
defined as

ηy,q(z, u) =
{
η(y, vj+2) if z=y and u=vj for some 0� j �3,
η(z, u) otherwise,

where the sum in vj+2 should be understood modulo 4.
The generator L of the lattice gas we examine in this article is the

superposition of the exclusion dynamics with the collisions just introduced:

L = Lex + Lc .

Let {η(t): t�0} be the Markov process with generator L.
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2.1. The Invariant States

We assume that the sets V and Q are chosen in such a way that the
unique conserved quantities are the local mass I0 and local momentum Ia ,
a=1, . . . , d:

I0(ηx) =
∑

v∈V
η(x, v) , Ia(ηx) =

∑

v∈V
(v · ea) η(x, v) .

Examples of sets V and collision dynamics with this property are easy to
produce. Consider, for example, V = E and take Q as the set of all vec-
tors (v,w, v′,w′) such that v+w=v′ +w′ =0. An elementary computation
shows that the unique conserved quantities are total mass and momentum.
Ref. 4 presents another example in d=3.

For each chemical potential λ = (λ0, λ1, . . . , λd), denote by mλ the
measure on {0,1}V given by

mλ(ξ) = 1
Z(λ)

exp

{
d∑

a=0

λaIa(ξ)

}

, (2.1)

where Z(λ) is a normalizing constant, I0(ξ)=
∑
v∈V ξ(v), Ia(ξ)=

∑
v∈V (v ·

ea)ξ(v) for a= 1, . . . , d. Notice that mλ is a product measure on {0,1}V ,
i.e., that the variables {ξ(v):v∈V} are independent under mλ.

Denote byµλ the product measure on ({0,1}V )Zd with marginals given by

µλ{η:η(x, ·)= ξ} = mλ(ξ)

for each ξ in {0,1}V and x in Z
d . µλ is a product measure in the sense

that the variables {η(x, v):x ∈Z
d , v∈V} are independent under µλ. A sim-

ple computation shows that µλ is an invariant state for the Markov pro-
cess with generator L for each λ in R+ × R

d , that the generator Lc is
symmetric with respect to µλ and that Lex has an adjoint Lex,∗ in which
p(e, v) is replaced by p∗(e, v)=p(−e, v).

The expected value of the density under an invariant state can be
computed explicitly. Fix a vector v in V and define θv: Rd+1 →R+ as the
expected value of η(x, v) under µλ:

θv(λ) := Eµλ [η(x, v)] = exp
{
λ0 +∑d

a=1 λa(v · ea)
}

1+ exp
{
λ0 +∑d

a=1 λa(v · ea)
} ·
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In this formula and below, for a probability measure µ, Eµ stands for the
expectation with respect to µ. The expectation under the invariant state
µλ of the mass and momentum are given by

ρ(λ) := Eµλ [I0(ηx)] =
∑

v∈V
θv(λ)

ua(λ) := Eµλ [Ia(ηx)] =
∑

v∈V
(v · ea)θv(λ) .

(ρ(λ), u1(λ), . . . , ud(λ)) is the gradient of the strictly convex function
logZ(λ). In particular, the map which associates the chemical potential λ

to the vector of density and momentum (ρ,u)= (ρ, u1, . . . , ud) is one to
one. Therefore, the chemical potential λ= (λ0, . . . , λd) can be expressed in
terms of (ρ,u): there exist a subset A of R+ ×R

d and functions �a :A→
R, a=0, . . . , d, such that

λa = �a(ρ(λ),u(λ)) (2.2)

for each λ in R+ × R
d . Let � = (�0, . . . ,�d). This correspondence per-

mits to parameterize the invariant states by the density and the momen-
tum: For each (ρ,u) in A, let

νρ,u = µ�(ρ,u) .

2.2. Hydrodynamical Limit Under Euler Scaling

In this subsection, we deduce the hydrodynamic equation of the
system under the assumption of conservation of local equilibrium. Fix
smooth functions ρ: Rd → R+, u: Rd → R

d . For each ε > 0, denote by
νερ(·),u(·) the product measure on X with marginals given by

νερ(·),u(·){η(x, ·)= ξ} = νρ(εx),u(εx){η(0, ·)= ξ}

for each x in Z
d and each configuration ξ in {0,1}V . Assume that particles

are initially distributed according to νερ(·),u(·).
For j = 1, . . . , d, let ∇−

j denote the lattice gradient acting on func-
tions f : Zd → R by ∇−

j f (z)= f (z)− f (z − ej ). From Ito’s formula, for
a=0, . . . , d, we have the conservation law

dIa(ηx(t)) =
d∑

j=1

∇−
j w

a
x,j dt + dMa

x (t) ,
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where Ma
x (t) are martingales and wax,j are the currents defined by

L Ia(ηx) = Lex Ia(x, η) =
d∑

j=1

∇−
j ω

a
x,j ,

where

ω0
x,j = γ ∇−

j I0(ηx+ej ) +
∑

v∈V
(ej ·v) bx,j (v) ,

ωax,j = γ ∇−
j Ia(ηx+ej ) +

∑

v∈V
(ea ·v)(ej ·v)bx,j (v) and

bx,j (v) = η(x+ ej , v)η(x, v) − (1/2)[η(x+ ej , v)+η(x, v)] .

In this computation, the full generator can be replaced by the exclu-
sion operator because the collision operator preserves the density and the
momentum. Let ωaj =ωa0,j for 0�a�d, 1� j �d.

The expectation of the mass current in the j th direction under the
local Gibbs state νερ(·),u(·) is denoted by π0,j and given by

π0,j (ρ(εx),u(εx)) := Eνε
ρ(·),u(·) [w

0
x,j ]

=
∑

v∈V
(v · ej ) θv(�(ρ,u))

{
θv(�(ρ,u))−1

}+γ (∇−
j ρ)(εx) ,

while the expectation of the momentum currents πa,j are given by

πa,j (ρ(εx),u(εx)) := Eνε
ρ(·),u(·) [w

a
x,j ]

=
∑

v∈V
(ea ·v) (ej ·v) θv(�(ρ,u))

{
θv(�(ρ,u))−1

} + γ (∇−
j ua)(εx) .

In both formulas, on the right hand side, ρ and u are evaluated at εx.
Assuming conservation of local equilibrium, it is not difficult to

derive the hydrodynamic equations in the Euler scale for the lattice gas
considered in this article (cf. Ref. 8). It is given by the system of hyper-
bolic equations

{
∂tρ +∑d

j=1 ∂xj π0,j = 0 ,
∂tua +∑d

j=1 ∂xj πa,j = 0 .

Notice that the factors γ∇−
j do not survive in the limit due to the

presence of a second derivative. They will appear, however, in the diffusive
scale.
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2.3. Incompressible Limit

Inserting the local equilibrium assumption into the conservation laws,
on the time scale ε−1t one would obtain the equations

{
∂tρ + ε−1∑d

j=1 ∂xj π0,j = γ
ρ ,

∂tua + ε−1∑d
j=1 ∂xj πa,j = γ
ua .

Consider a system in which the density is near a constant and veloc-
ity is of order ε. Expanding the mass density, the momentum density and
the mass and momentum currents, we obtain

ρ = ρ(0)+ ερ(1)+ ε2ρ(2)+· · · ,
u = εu(1)+ ε2u(2)+· · · ,
π = π(0)+ επ(1)+ ε2π(2)+· · · .

Using these expansions and assuming that the zeroth order terms of π are
constants, we obtain the incompressible Navier–Stokes equations

{∑d
j=1 ∂xj π

(1)
a,j =0

∂tu
(1)
a +∑d

j=1 ∂xj π
(2)
a,j =∑i,j

∑
b D

a,b
i,j ∂xi ∂xj u

(1)
j

for a= 0, . . . , d and u0 = ρ. Here the diffusion coefficient Da,bi,j = γ δa,bδi,j
is a diagonal matrix. It turns out that this naive computation is correct if
the diffusion coefficient is instead given by a Green–Kubo formula.

2.4. Green–Kubo Formula

For simplicity, let λj =0 for 0�j �d so that θv(λ)=1/2 for every v∈
V . Denote this measure by µ0 and let ξ(x, v)= η(x, v)− θv(λ)= η(x, v)−
1/2.

Let τx be the shift by x on the lattice, so that (τxη)(y, v)=η(x+y, v).
Denote by 〈〈·, ·〉〉=〈〈·, ·〉〉µ0 the scalar product defined on X by

〈〈f, g〉〉 =
∑

x∈Zd

Eµ0 [f ; τxg]

for two local functions f, g. Here Eµ0 [g;h] stands for the covariance
between g and h: Eµ0 [g;h]=Eµ0 [g h]−Eµ0 [g]Eµ0 [h]. Let G0 be the space
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of local functions satisfying

Eµ0 [g] = 0 and 〈〈g, Ia〉〉 = 0

for 0�a�d.
Let χ = {χa,b, 0 � a, b� d} be the susceptibility which in our context is

given by

χa,b = 〈〈Ia, Ib〉〉 = Eµ0 [Ia(η0); Ib(η0)] .

Denote by σaj the part of the current orthogonal to the constants of motion:

σaj = ωaj −
d∑

b=0

c
a,b
j Ib(η0) ,

where the coefficients ca,bj are chosen for σaj to belong to G0. An elemen-
tary computation shows that

c
a,b
j =

d∑

e=0

〈〈ωaj , Ie〉〉(χ−1)e,b = ∂

∂αb
Eνα
[
ωaj
]
,

α = (α0, . . . , αd). Moreover, for 1�a�d,

σ 0
j = γ {I0(ηej )− I0(η0)} +

∑

v∈V
(ej ·v)ξ(ej , v)ξ(0, v) ,

σ aj = γ {Ia(ηej )− Ia(η0)} +
∑

v∈V
(ej ·v)(ea ·v)ξ(ej , v)ξ(0, v) .

For simplicity assume that the susceptibility is a constant times the
identity: χa,b=κ δa,b. A straightforward computation shows that this is the
case if the set V is a cube centered at the origin. Under this assumption,
following the computation presented in Section 2 of Ref. 10, we obtain that
for 0�a, b�d, 1� i, j �d,

D
a,b
i,j (t) := 1

2tκ






∑

x∈Zd

Eµ0

[
Ia(ηx(t)); Ib(η0(0))

]− t2V a,bi,j






= γ δa,bδi,j + 1
2tκ

∫ t

0
ds

∫ s

0
dr〈〈σai , erLσbj 〉〉

+ 1
2tκ

∫ t

0
ds

∫ s

0
dr〈〈σaj , erLσbi 〉〉 ,
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where

2V a,bi,j = ∇Eνα [ωa0,i ] ·∇Eνα [ωb0,j ] + ∇Eνα [ωb0,i ] ·∇Eνα [ωa0,j ]

and, for a local function h, ∇Eνα [h] = ((∂/∂α0)Eνα [h], . . . , (∂/∂αd)Eνα [h]).
In dimension d�3, the diffusion coefficients Da,bi,j (t) converge, as t ↑∞, to

the diffusion coefficients Da,bi,j given by the incompressible Navier–Stokes
equations in Subsection 2.3 (cf. Ref. 4).

For θ in R
d and r in R

d+1, let

Dθ,r (t) =
d∑

a,b=0

d∑

i,j=1

raθiD
a,b
i,j (t)θj rb .

We can now state the main result. Let R
n∗ =R

n \ {0}.
Theorem 2.1. Fix θ in R

d∗ and r in R
d+1∗ . In dimension d= 2, there

exists a positive constant C0 =C0(θ, r) so that for all sufficiently small λ>0,
∫ ∞

0
dt e−λt tDθ,r (t) � C0λ

−2 log logλ−1 .

Recall that
∫∞

0 e−λtf (t)dt∼λ−α as λ→0 means, in some weak sense,
that f (t)∼ tα−1 as t→∞. Theorem 2.1 is therefore stating that the diffu-
sion coefficient Dθ,r (t) is diverging as log log t in a weak sense.

Fix a vector θ in R
d , r in R

d+1 and let σ =σθ,r be given by

σ =
d∑

a=0

d∑

j=1

raθiσ
a
i . (2.3)

An elementary computation shows that for every λ>0
∫ ∞

0
dt e−λt tDθ,r (t) = γ λ−2‖θ‖2‖r‖2 + λ−2〈〈σ, (λ−L)−1σ 〉〉 .

Therefore, Theorem 2.1 follows from next estimate on the resolvent.

Lemma 2.2. Fix θ in R
d∗ and r in R

d+1∗ . There exists a positive con-
stant C0 =C0(θ, r) such that for sufficiently small λ>0,

〈〈σ, (λ−L)−1σ 〉〉 � C0 log logλ−1 .

Notice that the piece of the current γ {Ia(ηej )− Ia(η0)} vanishes for
the inner product 〈〈·, ·〉〉. We may therefore ignore it in the computations
below.
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3. DUAL REPRESENTATION

Recall that we are fixing the chemical potentials to be zero: λj =0 for
0� j �d and that we denote by µ0 the product invariant measure associ-
ated to this chemical potential. Unless otherwise stated, 〈f, g〉 stands for
the inner product of f and g in L2(µ0).

Denote by E the finite subsets of Z
d × V and by En the subsets of E

with cardinality n, for n�0. For a set A in E , let �A be the local function
defined by

�A(η) =
∏

(x,v)∈A
[η(x, v)−1/2] =

∏

(x,v)∈A
ξ(x, v) .

By convention �φ = 1, where φ stands for the empty set. It is not diffi-
cult to check that {�A:A ∈ E} forms an orthogonal basis of L2(µ0). In
particular, any local function f can be written as

∑
A∈E f(A)�A for some

finite supported function f:E →R. This latter function is called the Fourier
coefficients of the local function f and frequently denoted by Tf . A local
function f is said to have degree n�0 if (Tf )(A)=0 for any A in Ecn.

Notice that for any local functions f = ∑
A∈E f(A)�A,g =∑

A∈E g(A)�A,

〈f, g〉µ0 =
∑

n�0

(1/4)n
∑

A∈En
f(A)g(A) .

The factor (1/4) appears because we did not consider an orthonormal
basis since Eµ0 [ξ(x, v)2]=1/4.

We say that two finite subsets A, B of Z
d × V are equivalent if one

is the translation of the other. This equivalence relation is denoted by ∼
so that A∼B if A=B+x for some x in Z

d . Let Ẽn be the quotient of En
with respect to this equivalence relation: Ẽn= En/∼, Ẽ = E/∼. An elemen-
tary computation (cf. Ref. 9) gives that

〈〈f, g〉〉µ0 =
∑

n�1

(1/4)n
∑

A∈Ẽn
f̄(A) ḡ(A) ,

where

f̄(A) =
∑

z∈Zd

f(A+ z) . (3.1)
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Therefore, if we denote by 〈〈·, ·〉〉 the inner product in L2(E) defined by

〈〈f,g〉〉 =
∑

n�1

(1/4)n
∑

A∈Ẽn
f̄(A) ḡ(A) ,

where f̄, ḡ are defined by (3.1), we have that

〈〈f, g〉〉µ0 = 〈〈Tf ,Tg〉〉 .

The goal of this section is to examine the action of the generators
Lex , Lc on the Fourier coefficients. More precisely, to find operators L

ex ,
L
c such that L

ex
T=TLex , L

c
T=TLc.

3.1. The Exclusion Operator

We start with the exclusion part of the generator which can be decom-
posed into its symmetric part S and its antisymmetric part A as given by

(Sf )(η) = γ
∑

v∈V

∑

x∈Zd

d∑

j=1

{f (ηx,x+ej ,v)−f (η)} ,

(Af )(η) = 1
2

∑

v∈V

d∑

j=1

(ej ·v)
∑

x∈Zd

{η(x, v)−η(x+ ej , v)} {f (ηx,x+ej ,v)−f (η)} .

To examine the action of the symmetric part of the exclusion genera-
tor on the Fourier coefficients, we first compute S�A. An elementary com-
putation shows that for each set A in E ,

S�A = γ
∑

v∈V

d∑

j=1

∑

x∈Zd

{�Ax,x+ej ,v −�A}

provided Ax,x+ej ,v stands for






(A\ {(x, v)})∪{(x+ ej , v)} if (x, v)∈A and (x+ ej , v) �∈A,
(A\ {(x+ ej , v)})∪{(x, v)} if (x+ ej , v)∈A and (x, v) �∈A,
A otherwise.

(3.2)
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In particular, for any local function f =∑A f(A)�A, a change of variable
B=Ax,x+ej ,v gives that

Sf = γ
∑

A∈E
�A
∑

v∈V

∑

x∈Zd

d∑

j=1

{f(Ax,x+ej ,v)− f(A)} .

Therefore, if we define the operator S as

(Sf)(A) = γ
∑

v∈V

∑

x∈Zd

d∑

j=1

{f(Ax,x+ej ,v)− f(A)} ,

we have that TS =ST.
We turn now to the antisymmetric part. To compute A�A(η), observe

that [η(y,w)− 1/2]�A is equal to �A∪{(y,w)} if (y,w) does not belong to
A and is equal to (1/4)�A\{(y,w)} if (y,w) belongs to A because (η(y, v)−
1/2)2 =1/4. In particular, a straightforward computation shows that

A�A =
d∑

j=1

∑

(x,v)∈A
(x+ej ,v) �∈A

(ej ·v){�A∪{(x+ej ,v)} − (1/4)�A\{(x,v)}}

+
d∑

j=1

∑

(x+ej ,v)∈A
(x,v)�∈A

(ej ·v){(1/4)�A\{(x+ej ,v)} −�A∪{(x,v)}} .

In the first term on the right hand side, the second sum is carried over all
pairs (x, v) in Z

d × V , such that (x, v) belongs to A and (x+ ej , v) does
not. Therefore, if f =∑A∈E f(A)�A is a local function, after elementary
changes of variables, we obtain that

Af =
∑

A∈E
(Af)(A)�A

provided A=J+ +J−, where

(J+f)(A) =
d∑

j=1

∑

(x,v)∈A
(x+ej ,v)∈A

(ej ·v){f(A\ {(x+ ej , v)})− f(A\ {(x, v)})} ,
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(J−f)(A) = (1/4)
d∑

j=1

∑

(x,v)�∈A
(x+ej ,v) �∈A

(ej ·v){f(A∪{(x+ ej , v)})− f(A∪{(x, v)})}

and TA=AT.
Let L

ex = S + A. Up to this point we proved that TLex = L
ex

T. This
operator L

ex , which is not a generator, can thus be decomposed in three
pieces, S, J+, J−. S is the symmetric part of L

ex and does not change the
degree of a function. In contrast, J+ increases the degree by one, while J−
decreases it by one and J− is the adjoint of −J+: (J−)∗ =−J+. In partic-
ular, J− +J+ is anti-symmetric:

〈〈Sf,g〉〉 = 〈〈f,Sg〉〉 and 〈〈J+f,g〉〉 = −〈〈f,J−g〉〉
so that 〈〈(J+ +J−)f,g〉〉 = −〈〈f, (J+ +J−)g〉〉 .

Moreover, a simple computation shows that in L2(E)

Sf = 0 for all functions f of degree one , (3.3)

J−f = 0 for all functions f of degree two .

3.2. The Collision Operator

The remainder of this section is devoted to the collision operator. We
start defining a generator Lc1 and showing in Lemma 3.1 below that it is
of the same order as Lc for our purposes. We conclude the section inves-
tigating the action of Lc1 on the Fourier coefficients.

Fix a site x in Z
d and a point q= (v,w, v′,w′) in the collision set Q.

Let q ′ = (v,w,w′, v′). Denote by Lx,q the generator defined by

(Lx,qf )(η) = p′(x, q, η){[f (ηx,q)−f (η)]+ [f (ηx,q
′
)−f (η)]} ,

where

p′(x, q, η) = η(x, v) η(x,w) [1−η(x, v′)] [1−η(x,w′)]
+η(x, v′) η(x,w′) [1−η(x, v)] [1−η(x,w)] .

Since the collision set Q is symmetric, we may rewrite the collision gener-
ator Lc as

Lc = (1/4)
∑

x∈Zd

∑

q∈Q
Lx,q .
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Fix a site x in Z
d . We start the analysis of the collision operator by

examining the generator Lx,q . Since site x is fixed, we omit the index x

below so that Lq =Lx,q . We also denote by ζ configurations of {0,1}V and
by ξ(v) the function ζ(v)−1/2. Since mλ given by (2.1) is a product mea-
sure on {0,1}V , {∏v∈B ξ(v):B ⊂V } forms an orthogonal basis of L2(m0)

if
∏
v∈φ ξ(v)=1, where φ stands for the empty set.
Fix q = (v,w, v′,w′) in Q and let Hq = {v,w, v′,w′}. Since Lq only

changes the variables {ζ(u):u∈Hq}, all other variables can be considered
as constants so that for any subset B of V ,

Lq
∏

u∈B
ζ(u) =

∏

u∈B\Hq
ζ(u)Lq

∏

u∈B∩Hq
ζ(u) .

A similar identity holds if we replace ζ by ξ .
Let

φ1(ξ) = ξ(v′) + ξ(w′) − ξ(v) − ξ(w) ,

φ̃3(ξ) = ξ(v)ξ(w)ξ(v′) + ξ(v)ξ(w)ξ(w′) − ξ(v′)ξ(w′)ξ(v) − ξ(v′)ξ(w′)ξ(w) .

The index 1 and 3 stand for the degree of the functions involved. Straight-
forward computations give the following identities for degree one func-
tions:

Lqξ(v) = Lqξ(w) = (1/2)φ1(ξ) + 2φ̃3(ξ) ,

Lqξ(v′) = Lqξ(w′) = −(1/2)φ1(ξ) − 2φ̃3(ξ) .

Degree two functions vanish under the action of the generator:

Lqξ(u1)ξ(u2) = 0

for u1, u2 in Hq . To derive these identities we used that Lq{ξ(v)+ξ(v′)}=0
and similar equalities. Degree three functions are such that

Lqξ(v)ξ(w)ξ(v′) = Lqξ(v)ξ(w)ξ(w′) = −(1/8)φ1(ξ) − (1/2)φ̃3(ξ) ,

Lqξ(v′)ξ(w′)ξ(v) = Lqξ(v′)ξ(w′)ξ(w) = (1/8)φ1(ξ) + (1/2)φ̃3(ξ) .

Finally, degree four functions vanish under the action of the generator:

Lqξ(v)ξ(w)ξ(v′)ξ(w′) = 0 .
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Here again, to deduce this equality we used that Lq{ξ(v)ξ(w)ξ(v′) +
ξ(v′)ξ(w′)ξ(v)} vanishes as well as similar identities.

It follows from the previous formulas that the unique non zero eigen-
value −4 is associated to the eigenfunction ψ=φ1 +4φ̃3. In particular, the
generator Lq can be written as

Lqf = −4
〈f,ψ〉
〈ψ,ψ〉ψ ,

where 〈·, ·〉 stands for the inner product in L2(m0). Denote by Lq,1, Lq,3
the operators defined by

Lq,1f = −4
〈f,φ1〉
〈φ1, φ1〉

φ1 , Lq,3f = −4
〈f,φ3〉
〈φ3, φ3〉

φ3

for φ3 = 4φ̃3. Since φ1, φ3 are orthogonal, an elementary computation
shows that

−Lq � −2Lq,1 − 2Lq,3 (3.4)

in the matrix sense.
If we reintroduce the index x, we obtain the operators

Lcj = (1/4)
∑

x∈Zd

∑

q∈Q
Lx,q,j

for j =1, 3. Notice that both operators keep the degree of local functions.
Indeed, for a local function f , an elementary computation shows that

Lcj f = −
∑

x∈Zd

∑

q∈Q
〈f,φx,q,j 〉xφx,q,j

because 〈φx,q,j , φx,q,j 〉x=1 for all x, q and j . In this formula 〈·, ·〉x stands
for the inner product with respect to m0(η(x, ·)), which means that only
the variables at site x are integrated and φx,q,j are the functions defined
by

φx,q,1(η) = ξ(x, v′) + ξ(x,w′) − ξ(x, v) − ξ(x,w) ,

φx,q,3(η) = 4ξ(x, v)ξ(x,w)ξ(x, v′) + 4ξ(x, v)ξ(x,w)ξ(x,w′)
−4ξ(x, v′)ξ(x,w′)ξ(x, v) − 4ξ(x, v′)ξ(x,w′)ξ(x,w) .
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If f =�B for some finite set B, an elementary computation shows that

〈�B,φx,q,j 〉xφx,q,j

has the same degree as �B for all x, q and j , which proves the claim.
It follows from (3.4) that

−Lc � −2Lc1 − 2Lc3 .

In order to have a tractable algebraic expression for the collision
operator, we plan to substitute Lc by Lc1. In order to estimate the third
degree terms we use the following lemma.

Lemma 3.1. There exists a finite constant C0 such that

C0
−1 〈〈f, {λ−Lex −Lc1}−1f 〉〉
� 〈〈f, {λ−L}−1f 〉〉 � C0 〈〈f, {λ−Lex −Lc1}−1f 〉〉

for every λ>0 and every local function f .

The proof of this result is based on the lemma below whose proof is
similar to the one of Lemma 4.2 in Ref. 11.

Lemma 3.2. Consider a function ω:E3 → R. Assume that there
exists ��1 such that ω((x1, v1), (x2, v2), (x3, v3))=0 if |x1 −x2|>� or |x1 −
x3|>�. Then, there exists a finite constant C0 depending only on ω such
that

∑

(x,v)∈E3

f2(x,v)ω(x,v) � C0

∑

(x,v)∈E3

f(x,v)(−Sf)(x,v)

for every finite supported function f:E3 →R.

Proof of Lemma 3.1. We claim that −Lc3 � −C0S for some finite
constant C0. Since Lc3 keeps the degree, to prove the claim we only need
to show that

〈−Lc3f,f 〉 � C0〈−Sf,f 〉

for local functions of a fixed degree.
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Fix n�1 and a local function f of degree n. By definition of Lc3, tak-
ing conditional expectations we obtain that

〈−Lc3f,f 〉 =
∑

q∈Q

∑

x∈Zd

E
[
〈f,φx,q,3〉2

x

]
.

Since the velocity set is finite, by definition of φx,q,3, to prove the claim it
is enough to show that

∑

x∈Zd

E
[
〈f,�Bx 〉2

x

]
� C0〈(−S)f, f 〉 ,

where Bx ={(x, v1), (x, v2), (x, v3)} and v1, v2, v3 are three distinct veloci-
ties in V . Assume that f =∑B f(B)�B . An elementary computation shows
that the expectation appearing on the left hand side of the previous
inequality is bounded above by

(1/4)n
∑

B⊃Bx
f(B)2 ,

where the sum is performed over all sets B which contain Bx . In particu-
lar, if for a finite set A={(x1, v1), (x2, v2), (x3, v3)}, we set

ρ(A)2 = (1/4)n
∑

B⊃A
f(B)2 ,

where the summation is performed over all sets B which contain A, we
just proved that

〈−Lc3f,f 〉 �
∑

v1,v2,v3

∑

x∈Zd

ρ({(x, v1), (x, v2), (x, v3)})2 .

By Lemma 3.2, this expression is less than or equal to

C0

∑

(x,v)∈E3

ρ(x,v)(−Sρ)(x,v) � C0〈−Sf,f 〉 .

Last inequality follows from Schwarz inequality and concludes the proof
of the claim. Here and below, C0, a0 are constants whose value may
change from line to line.
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Since −Lc3 � −C0S, we have that −Lc � −2(Lc1 + Lc3)� −C0(S + Lc1)
and

λ − S − Lc � a0{λ − S − Lc1}

for some finite constant a0>1 and all λ>0.
On the other hand, since Lc3 �C0S and since (a − b)2 � (1 − ε)a2 −

(ε−1 −1)b2 for every 0<ε<1, a straightforward computation shows that

−Lc � − (1− ε)
2

Lc1 + (ε−1 −1)
2

Lc3 � − (1− ε)
2

Lc1 + C0(ε
−1 −1)S

for some finite constant C0. Here the factor 1/2 appeared because
〈ψ,ψ〉=2 〈φ1, φ1〉=2〈φ3, φ3〉. If we choose ε small enough for C0(ε

−1 −1)
<1, it follows from this inequality that

λ − S − Lc � λ − (1− ε)
2

Lc1 − {1−C0(ε
−1 −1)

}
S

� a−1
0

{
λ − S − Lc1

}

for some finite constant a0>1 and all λ>0.
Up to this point we proved the existence of a finite constant a0 > 1

such that

a−1
0

{
λ − Lc1 − S

}
� λ − S − Lc � a0{λ − S − Lc1} (3.5)

for all λ>0.
It remains to add the asymmetric part of the exclusion generator.

Denote by Rs (resp. Ra , R∗) the symmetric part (resp. asymmetric part,
adjoint) of an operator R. It is well known that

{
(R−1)s

}−1 = R∗(Rs)−1R = Rs + (Ra)∗(Rs)−1Ra .

In particular, for every λ>0,

({
(λ−L)−1}s

)−1 = (λ−S −Lc) + A∗(λ−S −Lc)−1A .
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In view of (3.5), there exists a finite constant a0>1 such that

a−1
0

{
(λ−S −Lc1) + A∗(λ−S −Lc1)

−1A
}

� (λ−S −Lc) + A∗(λ−S −Lc)−1A
� a0

{
(λ−S −Lc1) + A∗(λ−S −Lc1)

−1A
}

so that

a−1
0

{
(λ−Lex −Lc1)

−1}s �
{
(λ−L)−1}s � a0

{
(λ−Lex −Lc1)

−1}s ,

which proves the lemma in the case of the inner product of L2(µ0). The
extension to the inner product 〈〈·, ·〉〉 is standard (cf. Ref. 12).

We conclude the section examining the action of Lc1 on the Fourier
coefficients. For any local function f =∑A∈E f(A)�A, a simple computa-
tion shows that

Lc1f =
∑

A∈E
(Lc1f)(A)�A ,

where

(Lc1f)(A) = (1/4)
∑

q∈Q

∑

x

iq(Ax)
{
f(Acx ∪{(x, v′)})+ f(Acx ∪{(x,w′)})

−f(Acx ∪{(x, v)})− f(Acx ∪{(x,w)})} .

In this formula, q= (v,w, v′,w′), Ax stands for the set of velocities u such
that (x, u) belongs to A: Ax = {u∈ V : (x, u)∈A}, Acx for the set of points
(y, u) in A with y �=x: Acx ={(y, u)∈A:y �=x} and if iq(Ax)=1 if Ax is an
incoming velocity, −1 is Ax is an outgoing velocity and 0 otherwise:

iq(Ax) = 1{Ax ={v}} + 1{Ax ={w}} − 1{Ax ={v′}} − 1{Ax ={w′}} .

With this notation we have that TLc1 = L
c
1T. Notice that −L

c
1 is a non-

negative symmetric operator in L2(En) and that

〈−L
c
1f, f〉 =

∑

x

∑

q

Eµ0

[
〈f,φx,q,1〉2

x

]
.
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4. CUTOFF OF LARGE DEGREES

For n� 1, let Gn = ∪1�k�nEn. Denote by πn the orthogonal projec-
tion on L2(En), by Pn the orthogonal projection on L2(Gn) and by Ln the
operator Lex +Lc1 truncated at level n: Ln=Pn(Lex +Lc1)Pn. In particular,
f=∑n�1 πnf and Pn=∑1�j�n πj .

To investigate the asymptotic behavior of 〈〈σ, (λ−Lex −Lc1)−1σ 〉〉, for
λ>0 consider the resolvent equation (λ−Lex −Lc1)uλ=σ . In the Fourier
space, the equation becomes the hierarchy equations






J
∗+π3uλ+ (λ−S−L

c
1)π2uλ=σ ,

J
∗+πk+1uλ+ (λ−S−L

c
1)πkuλ−J+πk−1uλ=0 , for k�3

because J
∗+ = −J− and because σ has degree 2. The hierarchy starts at

degree 2 instead of 1 because the degree one equation is trivial. Indeed,
by (3.3), (S+L

c
1)π1uλ=0, J−π2uλ=0, so that the degree one equation

−J−π2uλ+ (λ−S−L
c
1)π1uλ=0

becomes π1uλ=0. Hence π1uλ plays no role and we can set π1uλ=0.
Notice that we are using the same notation σ for the local function

defined in (2.3) and its Fourier transform σ :E →R which is given by

σ(A) = θj

{

r0(ej ·v)+
d∑

a=1

ra(ea ·v)(ej ·v)
}

(4.1)

if A={(0, v), (ej , v)} for some v in V , 1� j �d, and σ(A)=0, otherwise.
Consider the truncated resolvent equation up to the degree n:






J
∗+π3uλ,n+ (λ−S−L

c
1)π2uλ,n=σ ,

J
∗+πk+1uλ,n+ (λ−S−L

c
1)πkuλ,n−J+πk−1uλ,n=0 , 3�k�n−1 ,

(λ−S−L
c
1)πnuλ,n−J+πn−1uλ,n=0 .

(4.2)

We can solve the final equation of (4.2) by

πnuλ,n= (λ−S−L
c
1)

−1
J+πn−1uλ,n .
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Substituting this into the equation of degree n−1, we have

πn−1uλ,n=
[
(λ−S−L

c
1)+J

∗
+(λ−S−L

c
1)

−1
J+
]−1

J+πn−2uλ,n .

Solving iteratively we arrive at

π2uλ,n = Tnσ ,

where the operators {Tn, n�2} are defined inductively by

T2 = (λ−S−L
c
1)

−1 , Tn+1 =
{
(λ−S−L

c
1)+J

∗
+T −1

n J+
}−1

. (4.3)

The truncated equation represents the solution of (λ−Ln)uλ,n=σ and
hence 〈〈π2uλ,n, σ 〉〉=〈〈σ, (λ−Ln)−1σ 〉〉 so that

〈〈σ, (λ−Ln)−1σ 〉〉 = 〈〈σ,Tnσ 〉〉 ,

where, for example,

T3 =
{
(λ−S−L

c
1)+J−(λ−S−L

c
1)

−1
J+
}−1

,

T4 =
[
(λ−S−L

c
1)+J−

{
(λ−S−L

c
1)+J−(λ−S−L

c
1)

−1
J+
}−1

J+
]−1

.

Lemma 4.1. For each λ > 0, 〈〈σ, (λ − L2k+1)
−1σ 〉〉 is an increas-

ing sequence which converges to 〈〈σ, (λ − Lex − Lc1)−1σ 〉〉 and 〈〈σ, (λ −
L2k)

−1σ 〉〉 is a decreasing sequence which converges to 〈〈σ, (λ − Lex −
Lc1)−1σ 〉〉.

Proof. Since λ−S−L
c
1 is positive, it is easy to show from the defi-

nition of the sequence of operators Tn that 0�T3 �T2 and that Tm�Tn if
Tm−1 �Tn−1. In particular, {T2k, k�1} is a decreasing sequence, {T2k+1, k�
1} is an increasing sequence and T2k+1 �T2j for any k, j �1:

〈〈σ, (λ−L3)
−1σ 〉〉 � 〈〈σ, (λ−L5)

−1σ 〉〉 � · · ·
· · ·� 〈〈σ, (λ−L4)

−1σ 〉〉 � 〈〈σ, (λ−L2)
−1σ 〉〉 . (4.4)

To check that 〈〈σ, (λ− Lex − Lc1)−1σ 〉〉 is in fact the limit of these
upper and lower bounds we use the variational formula. For any matrix
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M, let Ms denote the symmetric part (M+M∗)/2. The identity
{
[M−1]s

}−1

=M∗(Ms)
−1M always holds, and thus we have

〈〈σ, (λ−Lex −Lc1)
−1σ 〉〉

= sup
f

{
2〈〈σ, f〉〉−〈〈(λ−Lex −Lc1)f, (λ−S−L

c
1)

−1(λ−Lex −Lc1)f〉〉
}
,

(4.5)

where the supremum is carried over all finite supported functions f:E →R.
Note that

〈〈(λ−Lex −Lc1)f, (λ−S−L
c
1)

−1(λ−Lex −Lc1)f〉〉
= 〈〈f, (λ−S−L

c
1)f〉〉+〈〈Af, (λ−S−L

c
1)

−1
Af〉〉 ,

where A=J+ +J−. Hence,

〈〈σ, (λ−Lex −Lc1)
−1σ 〉〉= sup

f
inf
g

{
2〈〈σ −A

∗g, f〉〉

−〈〈f, (λ−S−L
c
1)f〉〉 + 〈〈g, (λ−S−L

c
1)g〉〉

}
.

Let an denote the supremum restricted to finite supported functions in f in
L2(Gn), and an denote the infimum restricted to finite supported function
g in L2(Gn) so that an ↑ 〈〈σ, (λ− Lex − Lc1)−1σ 〉〉 and an ↓ 〈〈σ, (λ− Lex −
Lc1)−1σ 〉〉. By straightforward computation one checks that an � 〈〈σ, (λ−
Ln+1)

−1σ 〉〉 � an, giving the desired result.

In what follows we will present a general approach to the Eqs. (4.2)
which, from (4.4) gives a nontrivial lower bound on the diffusion coeffi-
cient. Because it gives a sequence of upper and lower bounds, the method
has the potential to give the full conjectured scaling of the diffusion
coefficient.

5. REMOVAL OF HARD CORE

From Lemma 4.1 of the previous section we have a lower bound
at degree three. However, computations are complicated due to the hard
core exclusion. We follow Ref. 11 to remove the hard core restriction in
the formulas and then perform explicit computations in Fourier space. By
removal of the hard core, we mean replacing functions defined on En by
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symmetric functions defined on En = (Zd × V)n and replacing operators
acting on En by operators acting on En.

We first identify a function f :En → R with a symmetric function
f :En→R. Denote by ωn= (ω1, . . . , ωn), ωi= (xi, vi), the points of En. For
n�1, let

En,1 ={ωn:ωi �=ωj , for i �= j} (5.1)

and define

f (ωn)=
{
f ({ω1, . . . , ωn}) if ωn ∈En,1 ,
0 otherwise .

With the notation just introduced,

Eµ0









∑

A∈En
fA�A





2



= 1

n! 4n
∑

ωn∈En
f(ωn)

2 .

For a function f :En→R, we shall use the same symbol 〈f 〉 to denote the
expectation

1
n! 4n

∑

ωn∈En
f (ωn)

and write the inner product of two functions as 〈f, g〉= 〈fg〉. If f and g

vanish on the complement of En,1, this coincides with the inner product
introduced before. We also define, as before, 〈〈f, g〉〉=∑x∈Zd

〈τxf, g〉.
Let E=∪n�1En, Gn=∪1�j�nEj . We use the same symbol πn, Pn=∑

1�j�n πj for the projection onto En, Gn. As before, there is a sim-
ple formula for the inner product 〈〈 · , · 〉〉. Consider two finitely supported
functions f , g:En→R. By definition,

n! 4n〈〈f, g〉〉 =
∑

ωn∈En
z∈Z

d

f (ωn+ z)g(ωn) =
∑

ωn∈En
f̃ (ωn)g(ωn) ,

where ωn+ z= ((x1 + z, v1), . . . , (xn+ z, vn)).
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Denote by ∼ the equivalence relation on En defined by ωn∼ω′
n if for

all 1� i�n, vi=v′
i , xi−x′

i=z for some z in Z
d . Let Ẽn=En

∣∣∼. Since sum-
ming over all sites in En is the same as summing over all equivalence clas-
ses and then over all elements of a single class, the previous sum is equal
to

∑

ωn∈Ẽn

∑

z∈Zd

f̃ (ωn+ z)g(ωn+ z) =
∑

ωn∈Ẽn
f̃ (ωn)g̃(ωn)

because f̃ (ωn+ z)= f̃ (ωn). It remains to choose an element of each class.
This can be done by fixing the last coordinate xn to be zero. In conclusion,

n! 4n〈〈f, g〉〉 =
∑

v∈V

∑

ωn−1∈En−1

f ∗(ωn−1, v)g
∗(ωn−1, v) , (5.2)

where

f ∗(ωn−1, v) =
∑

z∈Zd

f ((x1 + z, v1), . . . , (xn−1 + z, vn−1), (z, v)) . (5.3)

Here again we see that the translations in the inner product effectively
reduce the degree of a function by one.

We derive now explicit formulas for the operators S, A+ acting on
symmetric functions of En. An elementary computation shows that

(Sf )(ωn) = γ

d∑

k=1

n∑

i=1

∑

ι=±
1{∇ ι

k,iωn ∈En,1}∇ ι
k,if (ωn)

if ωn belongs to En,1 and (Sf )(ωn)=0 if ωn does not. Here, for ι=±,

∇ ι
k,iωn = (ω1, . . . , ωi−1, (xi + ιek, vi),ωi+1, . . . , ωn) ,

∇ ι
k,if (ωn) = f (∇ ι

k,iωn)−f (ωn) .

Note that S is the discrete Laplacian with Neumann boundary condition
on En,1. In the same way,

(J+f )(ωn) =
n∑

i=1

∑

j �=i

d∑

k=1

(ek ·vi)1{xj + ek =xi, vj =vi}∇i,j
+ f (ωn) (5.4)
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if ωn belongs to En,1 and (J+f )(ωn)=0 otherwise. Here,

∇i,j
+ f (ωn) = f (ωin)−f (ωjn)

and the index j in ω
j
n indicates the absence of ωj in the vector ωn: ω

j
n=

(ω1, . . . , ωj−1,ωj+1, . . . , ωn). Finally, notice that

(Lc1f )(ωn) = (1/4)
∑

q∈Q

n∑

j=1

iq(vj )1{xk �=xj for k �= j}

[f (σj,v′ωn)+f (σj,w′ωn)−f (σj,vωn)−f (σj,wωn)] ,

if ωn belongs to En,1 and (Lc1f )(ωn) = 0 otherwise. Here, σj,uωn =
(ω1, . . . , ωj−1, (xj , u),ωj+1, . . . , ωn).

We now extend the operators S, J+ to symmetric functions not neces-
sarily vanishing on En,1 by formulas analogous to the ones above, except
that we drop some indicator functions. Let S, J+ and Lc1 be the operators
defined by:

(SF )(ωn) = γ (
F)(ωn) = γ

n∑

i=1

∑

ι=±

d∑

k=1

(∇ ι
k,iF )(ωn) ,

(J+F)(ωn) =
n∑

i=1

∑

j �=i

d∑

k=1

(ek ·vi)1{xj + ek =xi, vi =vj }∇i,j
+ F(ωn) and

(Lc1f )(ωn) = (1/4)
∑

q∈Q

n∑

j=1

iq(vj )1{xk �=xj for k �= j}

[f (σj,v′ωn)+f (σj,w′ωn)−f (σj,vωn)−f (σj,wωn)] .

Notice that 〈Lc1F 〉 = 〈J+F 〉 = 0 if 〈|F |〉<∞ and hence the counting
measure is invariant. Let

L=S+Lc1 +J+ .

and denote by Ln=PnLPn the restriction of L to Gn. Following Section 4
in Ref. 11, we prove the next result which permits to avoid the hard core
interaction of the exclusion.
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Proposition 5.1. In dimension d = 2, there exists a finite constant
C0 such that

1
C0n

6
〈〈σ, (λ−Ln)−1σ 〉〉 � 〈〈σ, (λ−Ln)−1σ 〉〉 � C0n

4〈〈σ, (λ−Ln)−1σ 〉〉 .

for all λ>0.

The proof of this proposition is similar to the one of Lemma 3.1 in
Ref. 11 and therefore omitted. The main difference is to prove Lemma 4.3
in Ref. 11 with S+Lc1, S+L

c
1 in place of S, S and this is elementary.

The special case n=3 combined with Lemmas 3.1 and 4.1 tells us that

〈〈σ, (λ−L)−1σ 〉〉 � C0〈〈σ, (λ−L3)
−1σ 〉〉 .

6. FOURIER COMPUTATIONS

To bound below 〈〈σ, (λ−L3)
−1σ 〉〉, define the Fourier transform of a

function f: (Zd ×V)n→R by

f̂ (pn,vn) =
∑

xn∈Znd

e−ixn·pn f(xn,vn)

for pn∈ (Rd/2πZ
d)n. Here we represented wn= (w1, . . . ,wn), wi = (xi, vi),

as (xn,vn) with xn= (x1, . . . , xn)∈ (Zd)n, vn= (v1, . . . , vn)∈Vn.
An elementary computation together with (5.2) shows that for any

local functions f , g of degree n,

〈〈f, g〉〉 = 1
(2π)(n−1)dn! 4n

∑

vn∈Vn

∫

[−π,π ](n−1)d
f̂∗(pn−1,vn)ĝ

∗(pn−1,vn) dpn−1 .

In this formula, f=Tf , f∗ is defined by (5.3) and f̂∗ is the Fourier trans-
form of (f∗)(xn−1,vn). Expressing f̂∗ in terms of f̂ we further obtain that

〈〈f, g〉〉 = 1
(2π)(n−1)dn! 4n

∑

vn∈Vn

∫

[−π,π ]nd∑
1�j�n pj=0

f̂(pn,vn) ĝ(pn,vn) dpn .
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Fix a symmetric function f: (Zd ×V)n→R. The Fourier transform of
the discrete Laplacian acting on f is given by

−
̂f(pn,vn) = f̂(pn,vn)W(pn) ,

where

W(pn) =
n∑

j=1

W(pj ) =
n∑

j=1

d∑

k=1

{1− cos(pj · ek)}

if pn= (p1, . . . , pn). Notice that we are using the same notation W(·) for
slightly different objects. Moreover, for n= 2, a straightforward computa-
tion shows that

Ĵ+f (p1, p2, p3,v3)=−i
d∑

j=1

∑

σ

1{vσ1 =vσ2} (ej ·vσ1)

×{sin(ej ·pσ1)+sin(ej ·pσ2)}̂ f(pσ1+pσ2 , pσ3;vσ1 , vσ3),

where σ runs over all permutations of degree three.
We are now in a position to state the first estimate based on Fourier

arguments.

Lemma 6.1. Fix a symmetric function f : (Zd ×V)2 →R. There exists
a finite constant C0 such that in dimension 2,

〈〈J+f, (λ−
3)
−1J+f〉〉

� C0

∑

v1,v2∈V

∫

[−π,π ]2
dpW(p) | log(λ+W(p))| |̂ f(p,−p;v1, v2) |2 .

The proof of this result is similar to the one of Lemma 3.2 in Ref. 11
and therefore omitted.

For 0� j �2, let Ij =TIj , 0� j �2 be the symmetric functions in En
associated to the conserved quantities. An elementary computation shows
that

I0(v) = 1 , I1(v) = e1 ·v , I2(v) = e2 ·v .

Let Q be the non positive symmetric matrix corresponding to the
operator Lc1 acting on functions depending only on one site. Notice that
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Ia , a= 0, 1, 2, are eigenvectors of Q. Denote by {Ia, 3 � a� |V| − 1} the
other eigenvectors of Q and by {qa, 0 � a � |V| − 1} the corresponding
eigenvalues. Since I0, I1, I2 are associated to conserved quantities, q0 =
q1 =q2 =0. Let O be the orthogonal matrix which diagonalizes Q:

D =O∗QO .

For n�1, let

Qn=
n∑

i=1

I ⊗· · ·⊗Q⊗· · ·⊗ I .

Since Lc1 has an indicator function, we have that 0 � −Lc � −Qn. More-
over, Qn can be diagonalized by On = O⊗n: Dn = O∗

nQnOn, where Dn =∑
I ⊗ · · · ⊗ D ⊗ · · · ⊗ I . Notice that the Laplacian commutes with these

matrices.
As in section 4, we can represent (λ−L3)

−1σ in terms of the opera-
tors S, J+ and Lc1 to obtain that

〈〈σ, (λ−L3)
−1σ 〉〉 = 〈〈σ, {λ−
−Lc1 +J ∗

+(λ−
−Lc1)−1J+
}−1

σ 〉〉 .

Since 0�−L1
c �−Qn, the previous scalar product is bounded below by

〈〈σ, {λ−
2 −Q2 +J ∗
+(λ−
3)

−1J+
}−1

σ 〉〉 .

Recalling that Q2 =O2D2O∗
2 and that 
 commutes with the operators O2,

we rewrite the previous expression as

〈〈O∗
2σ,
{
λ−
2 −D2 +O∗

2J
∗
+(λ−
3)

−1J+O2
}−1O∗

2σ 〉〉 .

To keep notation simple, let �= {λ−
2 − D2 + O∗
2J

∗+(λ−
3)
−1J+O2}−1

and denote by π̄ the projection onto the eigenspace corresponding to the
zero eigenvalue of D2. By Schwarz inequality, for any function H ,

〈〈H,�H 〉〉 � (1/2)〈〈π̄H,�π̄H 〉〉 − 〈〈(1− π̄)H,�(1− π̄)H 〉〉 .

We claim that 〈〈(1 − π̄)O∗
2σ,�(1 − π̄)O∗

2σ 〉〉 is bounded by a finite
constant. Indeed, by definition of �,

〈〈(1− π̄)O∗
2σ,�(1− π̄)O∗

2σ 〉〉 � 〈〈(1− π̄)O∗
2σ, (−D2)

−1(1− π̄)O∗
2σ 〉〉 .
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Since (1 − π̄) is the projection on the positive eigenvalues of D2, the pre-
vious expression is less than or equal to a finite constant which depends
on a lower bound for the positive eigenvalues of Q and an upper bound
for σ .

The following lemma is needed to estimate 〈〈π̄O∗
2σ,�π̄O∗

2σ 〉〉. Recall
that σ =∑0�a�d

∑
1�j�d raθjσ

a
j .

Lemma 6.2. π̄O∗
2σ =0 if and only if θ =0 or r=0.

Proof. Assume that π̄O∗
2σ = 0 and assume without loss of general-

ity that θ1 �=0. Fix the component {0, e1}. Since π̄ is the projection of the
eigenspace of D2 associated to the zero eigenvalues, π̄O∗

2σ =0 if and only
if the scalar product of σ with (Ia, Ib) vanishes for 0�a, b�2.

An elementary computation based on the explicit expression (4.1) for
σ shows that

σ · (Ia, Ib) = θ1

∑

v∈V
Ia(v) Ib(v)

{
r0(e1 ·v)+ r1(e1 ·v)2 + r2(e1 ·v)(e2 ·v)} .

Setting a=0 and b=1 we get that

θ1

∑

v∈V

{
r0(e1 ·v)2 + r1(e1 ·v)3 + r2(e1 ·v)2(e2 ·v)} .

The last two terms vanish due to the symmetry of V . Hence r0 = 0.
Repeating the same argument with a=b=1 (resp. a=1, b=2), we obtain
that r1 =0 (resp. r2 =0). This concludes the proof of the lemma.

We are now in a position to bound below

〈〈π̄O∗
2σ, {λ−
2 −D2 +O∗

2J
∗
+(λ−
3)

−1J+O2}−1π̄O∗
2σ 〉〉 .

Fix a function G in the image of π̄ . By the variational formula for
the H−1 norm, the previous scalar product with G in place of π̄O∗

2σ is
equal to

sup
F

{
2〈〈G,F 〉〉−〈〈F, [λ−
2−D2]F 〉〉−〈〈O2F,J

∗
+(λ−
3)

−1J+O2F 〉〉
}
,

where the supremum is performed over all local functions F . Restricting
this supremum to functions in the image of π̄ we obtain a lower bound.
In this case we may remove the operator D2 because π̄ is the projection
onto the space associated to the zero eigenvalues of D2.
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Lemma 6.1 and a straightforward computation show that

〈〈O2F,J
∗
+(λ−
3)

−1J+O2F 〉〉

is bounded above by the right hand side of the statement of Lemma 6.1.
Now, repeating the arguments presented in the proof of Lemma 3.3 in Ref.
11, we obtain that the previous variational formula is bounded below by

C0

∑

v2

∫

[−π,π)2
|Ĝ(p,−p,v2)|2

λ+2W(p)+C1W(p)| log{λ+W(p)}| dp

for some finite constants C0, C1. We used here that G is in the image of
π̄ because we needed the function F which maximizes the supremum to
be in the image of π̄ . The factor 2 appeared because W(p,−p)=2W(p).

Replace G by π̄O∗
2σ . It follows from the previous lemma and ele-

mentary computations that
∑

v2
| ¯̂πO∗

2σ(p,−p,v2)|2 is bounded below by
a positive constant close to the origin. The previous expression is therefore
bounded below by

C0

∫

[−ε,ε)2
1

λ+2W(p)+C1W(p)| log{λ+W(p)}| dp

for some ε > 0. Changing to polar coordinates, since there is no angle
dependence, we get an integral of the form

∫ ρ

0

rdr

λ+ r2(2−C1 log(λ+ r2))
∼
∫ ρ

0

−r dr
(λ+ r2) log(λ+ r2)

for some ρ>0. By the change of variables u=− log(λ+ r2) we finally get

∼
∫ − logλ

− logρ2

du

u
∼ log logλ−1 .

This proves Lemma 2.2.

Recall the recursive relation (4.3). If we denote the limit of Tn = T ,
then it satisfies the equation

T =
[
(λ−S−L

c
1)+J−T −1

J+
]−1

.
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We now assume that the dispersion relation of T −1 is given by






∞∑

j=1

W(pj )






∣∣∣
∣∣∣
log



λ+





∞∑

j=1

W(pj )










∣∣∣
∣∣∣

κ

for some κ > 0. Write
∑∞
j=1W(pj )= u+W(p1) where u=∑∞

j=2W(pj ).
Suppose that we are interested in u�λ. Then J−T −1

J+ is approximately
given by

∫

[−ε,ε)2
1

u+W(p)+ (u+W(p))| log{u+W(p)}|κ dp∼u| logu|1−κ (6.1)

For u�λ we have

T −1 = (λ−S−L
c
1)+J−T −1

J+ ∼J−T −1
J+

Thus we have κ= 1 − κ and this gives the value κ= 1/2. This is precisely
the exponent derived in Refs. 2, 5.

Notice that the exponent is different from the ASEP which takes the
value κ = 2/3.(15) This is because that the dispersion law is changed only
in one direction for ASEP. In the fluid model considered here, the collision
operator spread the dispersion law to all direction. This causes the expo-
nent on the right side of (6.1) to be 1−κ, compared with 1−κ/2 in Ref.
15. This sketch is certainly not rigorous since it is not even clear where
the operator T should be defined. Though one can try to prove upper and
lower bound as in Ref. 15, it is not clear that the off-diagonal terms can
be controlled. However, the exponent 1/2 seems to be very convincing.
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